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ABSTRACT

Statistical procedures for shock models and wear processes are
considered in this paper. We show that independent gamma-
Dirichlet priors are conjugate priors when sampling from these
shock models. Bayes rules given the observations are computed.
In particular, we calculate the Bayes estimates of the survival
probabilities for these models. We show consistency of the
posterior distribution as well as weak convergence of the
centered and suitably rescaled posterior processes.
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BAYESTIAN NONPARAMETRIC STATISTICAL INFERENCE
FOR SHOCK MODELS AND WEAR PROCESSES

by

Albert Y. Lo

1. INTRODUCTION AND SUMMARY

Let a device be subject to shocks occurring randomly in tiwe accord-
ing to a homogenous Poisson point process N = {N(t) ; t ¢ R} with

th

intensity A . The i~ shock causes a random amount of damage X

{0

i=1, ..., n, ... . The random damages are assumed to be independent

and identically distributed as F , where F 1is a distribution function

supported by {0,®) . (This implies damages are never negative, also

note that the results in Section 2 do not depend on the support of F .)

This shock model have been studied by Esary, Marshall and Proschan (1973),

Barlow and Proschan (1975), among others. The analogy of the shock model

in risk and acturial analysis has been given by Bilhlmann (1970, Chapter 2).
We consider Bayesian nonparametric procedures for the shock model and

assume that the reader is familiar with the results in Ferguson (1973). The

prior distribution we use £§r (A,F) 1is the "independent gamma-Dirichlet"

prior. By this we mean that A has a gamma distribution with parameter

Yy and 6 , denoted by UY’e(dA) , F has a Dirichlet distribution with

parameter o , denoted by Pa(dF) yand A and F are independent. We

write (A,F) ~ UY’e x Pa and find that the posterfor distribution of (A,F)

given the Poisson process up to time T and xl, ceey xN(T) is again an

P ’

a+26x

i
where the summation is from one to N(T) and Gx denotes the probability

independent gamma-Dirichlet distribution, namely, uy+N(T),6+T x

measure degenerate at x .




The asymptotic properties of the posterior distribution is considered
and it is shown that the posterior limiting law of the parameters centered
and suitably rescaled is Gaussian.

A parameter of primary interest is the survival probability, which
is the probability that the device survives beyond time t . We calculate

the Bayes estimate for this parameter.




2. THE PRIOR AND POSTERIOR DISTRIBUTIONS

Throughout this paper, we assume that the damages xl. e xk, ces
caused by the shocks are independent and identically distributed random
variables having distribution F and that the shock process
N, = {N(t) ; t € [0,T]} is a Poisson process with parameter A which
is independent of the damages. The observables are therefore NT and
Xp = (Xps eens xN(T))

We formalize the above assumptions as follows: for each measurable

partition A., ..., Ay of [0,T] and each collection Cl’CZ’ ev. of

1’

Borel sets on the real line, the joint distribution of N,, and 5? for

T
given (A,F) 13 determined by

Py pMpAp =k 53 a1, o, 2L K e C e, e, ND)
(2.1) 2 mki(a y N
- e-XTN(T) - H —k_Tl_ ° n F(ci)
gu1 &y {=1

where NT(A ) 1is the number of shocks in A, , m 1is the Lebesque

3 3

measure and k k, are nonnegative integers with

1* 0 Ky

L
I &k, = N(T) .
g=1 3

Using the idea of conjugate priors, we let A ~UY,e where UT,e
is the gamma distribution with mean y/8 and variance Yle2 and let
F ~-Pa where Pa is the Dirichlet distribution of F with parameter
a where a 1is the finite measure on the reals. With the additional
assumption that A and F are independent, we have the independent

gamma-Dirichlet distribution UY x Pa of (A\,F) .

,8




We need the following notations to prove the main theorem. Let
QA be the distribution of the observations given A , QF the distribution
of the observations given F and Q the marginal distribution of the
observations. The characterizations of these distributions via finite
dimensional sets are given in the appendix. We are ready to present the

following

Theorem 2.1:

Given N_. and 31 » the (posterior) distribution of

T
(1) X is UY+N(T),9+T
(i1) F is P N(T) and
at+ Z $
i=1 i

(ii1) A and F are independent.

Proof:

Note that according to (2.1), given (A,F) , the conditional dis-

tribution of N, and ¥T given N(T) and 31 is independent of (A,F)

T

Thus {N(T),XT} is a set of sufficient statistics for the family of model

distributions {Pk P (\,F) ¢ R+ *GD} . Thus, we can treat the reduced
»

problem and hence, (2.1) becomes

PA,F{N(T) =k, X, eC

" (3 1i=1, ..., N(T)}

(2.1") AT
=8 OO 1 pec))
k! SRR A

To prove (1), we first hold F fixed (that is given F). We shall show

that the posterior distribution of A given N(T) and gT is




e s

et o

uY+N(T),e+T(dA) , which is independent of F . We need the following
notations.
k
Let A= {N(T) =k} and C= I C1 . According to the definition
i=1

of conditional distributions, we have to check that for all B e¢ B, for

all such A's and for all such C's , the following equality holds

{éruwn(r),e+'r(B)QF(dN(T)’d’~‘) - {PA,F(A ¥ Oy 6@
k
where QF is given by (A.1). Since QF(Q) = ] F(Ci) is cancelled
i=]

out in both sides given F , we need only check that
{uw(n,m(n)%(dn(r)) . {PA’F(A)UY’e(d)‘) :

But this is well known since it says that gamma distributions are con-
jugate priors when sampling from Poisson random variables. Thus (i)
holds and given F the posterior distribution of A 1is independent
of F.

Note that (ii) can be proved similarly. We first hold X fixed,

and check that P

a+t X
i=1 i

distribution of F given NT , 51 and A . We need to check if the
following equality holds for all D ¢ A, all A's and all C's,

where QA is given by (A.1l)

I I P N(T) (D)QA(dN(T).d{t) --"P)‘,F(A x g)Pa(dF) .
ACr o { s D
1=1 %4

Nir) (dF) satisfies the definition of the posterior
8
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=AT k
Since QA(A) = S___{%zl_ is cancelled out in both sides, we need only to
check 1f

JP . @ouw - fr ©P @r) .
C D
-~ a+ z 8

1=1 %

But then this is true by Ferguson (1973, Theorem 1 of Section 3).

We have also shown that given A , the posterior distributiom of F

is independent of i , thus (iii) is true.||
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3. LIMITING DISTRIBUTION

The consistency of the posterior distributions is well known. A
general proof of this phenomenon is given by Doob (1949) who uses martingale
methods to obtain the result that the posterior distribution converges to
the distribution degenerate at the true parameter under which the sample
is actually drawn, for almost all true parameters. The delicate problem
of the classification of the true parameters under which consistency holds

is treated by many authors in various cases. In particular, if the

parameters are discrete distribution functions then the convergence holds
for all true parameters lying in the support of the so~called tail free
prior probabilities, see Freedman (1963) and Fabius (1964). Berk (1970)
investigates this problem in the dominated case.

In this section, we would rather search for the limiting posterior
distribution for the parameters. Note that in the parametric case,
this problem has been considered by many authors. See LeCam (1963),
or more recently, Walker (1969) and Dawid (1970). Our problem is non-
parametric in nature and our results are based on a theorem of Lo
(1978a).

We denote the "true" values of the intensity A and the damage

distribution by A, and F, respectively. Thus, P is the true
0 0 AO’FO

probability distribution of the observations. We denote the '"posterior

random variable" A and the "posterior Dirichlet process" F given

observations up to time T by A_ and FT respectively. Thus,

T
a.s. P ,
[ AO’FO]

ce e s e wem——




8
QpFp ~Unmy,eer * P wery - ;
' at ) & $
X T
i=1 i L
The following proposition shows the consistency of the posterior b
¥
distributions. k
§
Proposition 3.1: }
é
The posterior distribution of A converges to the distribution R
:
degenerate at XO and the posterior distribution of F converges to 2
the distribution degenerate at F0 » as T goes to infinity, i
a.s. P . :
[ AO’FO:I
Proof:

+ N(T) +N(T)\ 2 ¢
= Y T DL} - YxrAll) = :

Note that E{}, | Np,Xp} s+ 71~ and E{(AT SET ) | NT,gT}
l_i_ﬂil% . Because Ng?) -> AO a.s. PX F via some renewal arguments, g
(6 +7T) 0’0 H
see Chung (1974, p. 134). Thus the posterior mean of A goes to Ao é
and the posterior variance of A goes to zero, thus the first assertion i
%
follows. To show the second one, let Bj 1 Jj=1, ..., K be a measurable é
partition of R , we shall show that a.s. P . t
A~ F .
0’0 ;
1) E{FT(Bj) |NT,}5T} - Fo(Bj) i 3=1, ..., K. e
N(T) N(T) ’
a+ ) & [B) a+ ) & |(B) o
@) edle s,y -tz Tt ! F(p)-ha=t il * I >0
T8y a(R) + N(T) T8 "7 m + NMD ¥ >0 :

j,2=1, ..., K.




Then the result will follow via Kallenberg (1976, Theorem 4.3). Now,

(1) holds because as T goes to infinity,

N(T)
a(nj) + 121 5xi(3j)
E(Fp(8) | BpuXpd = —oy 5D > Fe(B) 5 3= 1, ..n, Ko

(2) holds because for 3 ¥ 2

NfT) th)

a(B,) + s§_(B)) a(B,) + s (B,))
- 37 s %3 = T Sl
3 a(R) + N(T)

EQIFr (B Fr(B) - — O+ 7 (D | Ny Xy

N(T)
a(Bj) + 121 sxi(nj)

= E{Fp(B,)Fp(B)) | Npxp} - S+ N E{F3(B,) | Np, X}

N(T)
a(B) + 1 8 (B)
1= 1 E(r.(B,) | N.,X.}
a(R) + N(T) T'Py ¥

NfT) NET)
§_ (B.) a(B.) + 5 (B.)
ju1 ¥y % 3" qe ¥

a(R) + N(T) " T a@®) + N(T)
N§T) N(T)
a(Bj) + L sxi(nj) a(B,) + 121 sxi(nz)
(a(R) + N(T))(a(R) + N(T) + 1)
Ngr) N(T)
a(B,) + S, (B a(By) + ) 8 (8,)

I g %3 1=1
a(R) + N(T) a(R) + N(T)

a(Bz) +

+

3F%,3,8=1, ..., K.

The case for j = & can be proved similarly.ll

P e e




In the following, we shall prove that centered and properly rescaled,
¢ the posterior joint distribution of the parameters (A,F) converges
weakly to a joint Gaussian distribution, a.s. [%A F ] . We let F
0°°0

be distributions on {0,1] . Define

NiT)
a(t) + s, (©)
RTTy i1 4 )
Xp(e) = N(T) {Fp(t) - — 7 + N D) ; t e [0,1]

and

T T O +7T

Ys/’fgx -Lﬂﬂ}.

Let Wo » t € [0,1] be the Brownian bridge subject to a change of time

by Fo , 1.e.,

Ewo(t) =0, te [0,1]
E{W,(c) - Wo(s)}z = {Fo(t) - Fu(s)H1 = Fy(t) + Fy(s)} , s < ¢ .

Let Y be a centered normal random variable with variance AO . Then

Theorem 3.1:

If Fo is continuous, a.s. [%AO’FQ]

(YgoXp(+)) == (L0 (+)) vhen T+

where Y and W0(~) are independent.

10




Proof:

11

Because Y.r and X.r(-) are independent, we only need to show

(1) Y.r —L——Y and (2) XT(-) —L—-wo(-) a.s. [P)‘Q’Fo]. To show (1),

A_F probability 1; see
0°°0

previous arguments. Our assertion will follow if we show that deleting

let ﬂl = {N : Eégl - Ao} . This set is of P

a PAO’FO - null set and for all N ¢ Ql , and all {Tn} . '1‘n + o
we have YT —L;-N(O,Ao) as n >, See Billingsley (1968, p. 16).
n

Thus we pick any N ¢ Ql , hold N fixed and then let Tn be any sequence

of positive reals that goes to infinity. We shall show that YT -Lﬁ-N(O,AO).
N(T ) n
L
Note that Y. ) (X, - EX,) where X, ; § = 0,1, ..., N(T)
n i=0
are independent gamma random variables with distributiomns U 0+T
1" 'n

respectively with Yo =YY" 1;1<14 j_N(Tn) . Thus, the central

limit theorem for triangular array applies and (1) follows.
N(T)

We show (2) similarly. Let 92 = !%}l -+ Ao . i-IN(T)i L —»FO(-)

This set is of P
*0:Fo

- null set, fix (N,X

probability 1, see Proposition 3.1. Deleting a

PA F 1° e Xn, ees) € 92 and let Tn be a sequence

0’0
of positive reals that goes to infinity. We need to show XT —ih-wo(-) .
n

see Billingsley (1968, p. 16). But then this is proved in Example 1, Part II

of Lo (1978). Thus a.s. [%Ao’Fo] , (XT,XT(-)) —L—-(Y,Wo.(')) , where

Y and Wb(-) are independent. | |

The following corollary provides an asymptotic Bayesian simultaneous

confidence band for the continuous true distribution functionms.

S e 4 A M€ s B, DA 8 ST

b i SRS it it clcniisibini
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Corollary 3.1:

Under the assumptions of Proposition 3.1, we have a.s. [PA F ]
0’0

- 2.2
lim P { sup IXT(t)l > A} -2 ] (-l)j+1e-zj A » A >0
T+ [ 0<t<l i=1

2
lim P : sup XT(t) > Al = e-2A , A >0,
T+ {0<t<l f

Proof:

These are well known congequences of Theorem 3.1. For detail

arguments, see Billingsley (1968, p. 142).||




4. APPLICATIONS

Let f be a real valued integrable (or positive) function of (A,F) ,
then the Bayes rule given the observations with respect to a quadratic
type loss function is E{f(A,F) | NT’*T} . For different standard

functions of F , the Bayes rules have been computed in Ferguson (1973).

e—At At k

«
Our concern here is the survival probability #H(t) , H(t) = Z Fk . o

k=0
where ik is the probabilicy that the device survives k shocks for the

period [0,t] . The P, 1is a deterministic function of k and the

k
capacity or threshold of the device. Thus H(t) is the probability that

the device survives the period [0,t] . We consider two cases.

Case (1):

h

In the cumulative damage model, the kc shock is survived by the

device if X 6 + ¢« + Xk does not exceed the capacity or threshold y

1

of the device. Note that in this case P, = P{X; + een + X <y | N(e) = k} .

k
This model has been considered by Cox (1962) and Barlow and Proschan (1975)

among others.

Case (2a):
" k
P, = N P{(X, <y, }= NI F(y,) . This represents the case where
'S 5 MR

there is a threshold which changes after each shock occurs and Yir ceeo Yy
are the successive threshold levels. This model is discussed by Esary

et al., (1973).




Case (2b):

P = {F(y)}k . This 1is a special case of (2a) with

14

Yy " ¥y "ttty "y, a fixed threshold level.
To compute our Bayes rule for the survival probability, let the

loss function be

L@ED = [ @) - Benae |,
+
R

where W is a totally finite measure on ([0,~) . Thus, the Bayes

rule with respect to this loss function will be, for each ¢t ,

H(e) = EC(R(D) | Npxp) .

Note that E{H(t) | NT’gT} can be calculated using the following properties

. for the posterior distribution of the parameters.

Property (la):

k
-tk T(y + N(T) + k) 1 o +
E{e . IN’}ET}' T'(y + N(T)) (0+T+t) (e+'r

Proof:

T Y+N(T)
+ t)

This is a consequence of Theorem 2.1.

Propert 1b):

erom | nx -

; f f[ 1=1 +12 ’ j](y-j‘-il uj) . [a::g) 1+j9.-z-i ) z](duj) .

A a®") + N(T) + & jel a®H +N(T) +3 -1
R




Proof:

This follows from Theorem 2.1 and repeated applications of Lemma 1

in Lo (1978b).

Property (lc)

N(T) j-1
. 4 Y L o ) 5, + ) 5, (d“j)
E{ H F( ) I N -f LN n 1-1 i 2'1 l
4 %1 -
i=1 ) o =1 a(R') + MT) +3 -1

Proof:

This is from Theorem 2.1 and an application of Lemma 1 in Lo (1978b).

Property (1d):

+ N(T)
T{a(R") + N(T)}lda(y) + } 5, (¥) +k
i=1 %4

k
o | npxg) - - - R
F{a(R") + N(T) + k}F%a(y) + ) 5, ()
1=1 %4

Proof:

h

This is the k" moment of beta random variables. Now, it is easy

to see that

E{H(e) | Ny, X}

v Atk |t l
= Z E Pk ce A - T | NT’ET’ by the monotone convergence theorem
k

B ol e S L) 8

k=0

since ik depends on F only and the fact that under the posterior

distribution, F and )\ are independent.

15
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- k
’ - 7 z{r(k)(y) | NT.gT}a{e'“xk | NT,)_cT} . ﬁ—,— in Case (1)

k=0 :
= k k

- jzo E:inl F(yi) l NT’KTI E{e‘ltxk [ NT’gT} . i? in case (2a)
® k

- 7 E{Fk(y) | Nr,gr}E{e-xtxk | NT’gT} . %7 in Case (2b),
k=0 )

and the conditional expectations are given by Property (la), (1b), (lc)

and (14d).

4.1 The Case of Random Threshold

Suppose there is no practical way to ingpect the device to determine
its threshold y or Fpo coen Yo cee - The threshold must be regarded

as a random variable. We let y ~ G(dy) and in case of Yy cees Vi oo

we let these be independent and identically distributed as G . The
distribution function G 13 a given threshold distribution for the device.
Of course, it might be that vy~ Gi(dyi) ; i=1, ..., k and yi's

are independent. But this case can be treated similarly and we omit the

details here. It is not difficult to see that Case (1), Case (2a) and

Case (2b) become

Case (1'):
P, - I %) (y)6y) .
0
Case (2a'):

_ j’ k k
P, =] e T F(y,) N G(dy,)
k ge1 1 a1 1

and
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Case (2b'):
k >
= k
P.= ) F(y)6@y) . .
:
0 b
Now it is easy to see, using Fubini's theorem, that in this model, H

f F% ey | “r*%} - [ | NpsXp}G(dy)
0 0
EJ‘f n F(y,) T G(dy,) | N,
A A i1 i {=1 i T gT
’ -f XK f E
0 0

8] ey | “r”&} - f o) | muxley |
0

0

k k
IIF(y)IN,}IIG(dy)
g=1 i ¥ gol i

and the integrands at the right sides are available in Property (1b), (lc)

and (1d).

a
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APPENDIX

Proposition 1l:

QF{NT(A )=k, ,§=1, ..., L ; X, €C i=1, ..., N(T)}

3 3 i i”
(A.1) 5
ST n (e )Y( 1 )"(T’ U R
r(y) 8+ T/\6+T g1 kj! q=1 i
QX{NT(Aj) = kj y 3=l e, 25K eC,i=], o, N
(A.2) a+ ) J(dx )
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Proof:
(A.1l) is obtained by integrating (2.1) with respect to UY 9 ° To

show (A.2) and (A.3), we first integrate (2.1) with respect to Pa and

UY g * Pa respectively and then an application of Lemma 1 in Lo (1978b)
1

concludes the proof. ||




